Python极简讲义:一本书入门数据分析与机器学习 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
Python极简讲义:一本书入门数据分析与机器学习电子书下载地址
- 文件名
- [epub 下载] Python极简讲义:一本书入门数据分析与机器学习 epub格式电子书
- [azw3 下载] Python极简讲义:一本书入门数据分析与机器学习 azw3格式电子书
- [pdf 下载] Python极简讲义:一本书入门数据分析与机器学习 pdf格式电子书
- [txt 下载] Python极简讲义:一本书入门数据分析与机器学习 txt格式电子书
- [mobi 下载] Python极简讲义:一本书入门数据分析与机器学习 mobi格式电子书
- [word 下载] Python极简讲义:一本书入门数据分析与机器学习 word格式电子书
- [kindle 下载] Python极简讲义:一本书入门数据分析与机器学习 kindle格式电子书
内容简介:
本书以图文并茂的方式介绍了Python的基础内容,并深入浅出地介绍了数据分析和机器学习领域的相关入门知识。
第1章至第5章以极简方式讲解了Python的常用语法和使用技巧,包括数据类型与程序控制结构、自建Python模块与第三方模块、Python函数和面向对象程序设计等。第6章至第8章介绍了数据分析必备技能,如NumPy、Pandas和Matplotlib。第9章和第10章主要介绍了机器学习的基本概念和机器学习框架sklearn的基本用法。
对人工智能相关领域、数据科学相关领域的读者而言,本书是一本极简入门手册。对于从事人工智能产品研发的工程技术人员,本书亦有一定的参考价值。
书籍目录:
第1章 初识Python与Jupyter
1
1.1 Python概要
2
1.1.1 为什么要学习Python
2
1.1.2 Python中常用的库
2
1.2 Python的版本之争
4
1.3 安装Anaconda
5
1.3.1 Linux环境下的Anaconda安装
5
1.3.2 conda命令的使用
6
1.3.3 Windows环境下的Anaconda安装
7
1.4 运行Python
11
1.4.1 验证Python
11
1.4.2 Python版本的Hello World
12
1.4.3 Python的脚本文件
13
1.4.4 代码缩进
15
1.4.5 代码注释
17
1.5 Python中的内置函数
17
1.6 文学化编程—Jupyter
20
1.6.1 Jupyter的由来
20
1.6.2 Jupyter的安装
21
1.6.3 Jupyter的使用
23
1.6.4 Markdown编辑器
26
1.7 Jupyter中的魔法函数
31
1.7.1 %lsmagic函数
31
1.7.2 %matplotlib inline函数
32
1.7.3 %timeit函数
32
1.7.4 %%writefile函数
33
1.7.5 其他常用的魔法函数
34
1.7.6 在Jupyter中执行shell命令
35
1.8 本章小结
35
1.9 思考与提高
36
第2章 数据类型与程序控制结构
40
2.1 为什么需要不同的数据类型
41
2.2 Python中的基本数据类型
42
2.2.1 数值型(Number)
42
2.2.2 布尔类型(Boolean)
45
2.2.3 字符串型(String)
45
2.2.4 列表(List)
49
2.2.5 元组(Tuple)
59
2.2.6 字典(Dictionary)
62
2.2.7 集合(Set)
65
2.3 程序控制结构
67
2.3.1 回顾那段难忘的历史
67
2.3.2 顺序结构
69
2.3.3 选择结构
70
2.3.4 循环结构
74
2.4 高效的推导式
80
2.4.1 列表推导式
80
2.4.2 字典推导式
83
2.4.3 集合推导式
83
2.5 本章小结
84
2.6 思考与提高
84
第3章 自建Python模块与第三方模块
90
3.1 导入Python标准库
91
3.2 编写自己的模块
93
3.3 模块的搜索路径
97
3.4 创建模块包
100
3.5 常用的内建模块
103
3.5.1 collection模块
103
3.5.2 datetime模块
110
3.5.3 json模块
115
3.5.4 random模块
118
3.6 本章小结
121
3.7 思考与提高
122
第4章 Python函数
124
4.1 Python中的函数
125
4.1.1 函数的定义
125
4.1.2 函数返回多个值
127
4.1.3 函数文档的构建
128
4.2 函数参数的“花式”传递
132
4.2.1 关键字参数
132
4.2.2 可变参数
133
4.2.3 默认参数
136
4.2.4 参数序列的打包与解包
138
4.2.5 传值还是传引用
142
4.3 函数的递归
146
4.3.1 感性认识递归
146
4.3.2 思维与递归思维
148
4.3.3 递归调用的函数
149
4.4 函数式编程的高阶函数
151
4.4.1 lambda表达式
152
4.4.2 filter()函数
153
4.4.3 map()函数
155
4.4.4 reduce()函数
157
4.4.5 sorted()函数
158
4.5 本章小结
159
4.6 思考与提高
160
第5章 Python高级特性
165
5.1 面向对象程序设计
166
5.1.1 面向过程与面向对象之辩
166
5.1.2 类的定义与使用
169
5.1.3 类的继承
173
5.2 生成器与迭代器
176
5.2.1 生成器
176
5.2.2 迭代器
183
5.3 文件操作
187
5.3.1 打开文件
187
5.3.2 读取一行与读取全部行
191
5.3.3 写入文件
193
5.4 异常处理
193
5.4.1 感性认识程序中的异常
194
5.4.2 异常处理的三步走
195
5.5 错误调试
197
5.5.1 利用print()输出观察变量
197
5.5.2 assert断言
198
5.6 本章小结
201
5.7 思考与提高
202
第6章 NumPy向量计算
204
6.1 为何需要NumPy
205
6.2 如何导入NumPy
205
6.3 生成NumPy数组
206
6.3.1 利用序列生成
206
6.3.2 利用特定函数生成
207
6.3.3 Numpy数组的其他常用函数
209
6.4 N维数组的属性
212
6.5 NumPy数组中的运算
215
6.5.1 向量运算
216
6.5.2 算术运算
216
6.5.3 逐元素运算与张量点乘运算
218
6.6 爱因斯坦求和约定
222
6.6.1 不一样的标记法
222
6.6.2 NumPy中的einsum()方法
224
6.7 NumPy中的“轴”方向
231
6.8 操作数组元素
234
6.8.1 通过索引访问数组元素
234
6.8.2 NumPy中的切片访问
236
6.8.3 二维数组的转置与展平
238
6.9 NumPy中的广播
239
6.10 NumPy数组的高级索引
242
6.10.1 “花式”索引
242
6.10.2 布尔索引
247
6.11 数组的堆叠操作
249
6.11.1 水平方向堆叠hstack()
250
6.11.2 垂直方向堆叠vstack()
251
6.11.3 深度方向堆叠hstack()
252
6.11.4 列堆叠与行堆叠
255
6.11.5 数组的分割操作
257
6.12 NumPy中的随机数模块
264
6.13 本章小结
266
6.14 思考与提高
267
第7章 Pandas数据分析
271
7.1 Pandas简介
272
7.2 Pandas的安装
272
7.3 Series类型数据
273
7.3.1 Series的创建
273
7.3.2 Series中的数据访问
277
7.3.3 Series中的向量化操作与布尔索引
280
7.3.4 Series中的切片操作
283
7.3.5 Series中的缺失值
284
7.3.6 Series中的删除与添加操作
286
7.3.7 Series中的name属性
288
7.4 DataFrame 类型数据
289
7.4.1 构建DataFrame
289
7.4.2 访问DataFrame中的列与行
293
7.4.3 DataFrame中的删除操作
298
7.4.4 DataFrame中的“轴”方向
301
7.4.5 DataFrame中的添加操作
303
7.5 基于Pandas的文件读取与分析
310
7.5.1 利用Pandas读取文件
311
7.5.2 DataFrame中的常用属性
312
7.5.3 DataFrame中的常用方法
314
7.5.4 DataFrame的条件过滤
318
7.5.5 DataFrame的切片操作
320
7.5.6 DataFrame的排序操作
323
7.5.7 Pandas的聚合和分组运算
325
7.5.8 DataFrame的透视表
334
7.5.9 DataFrame的类SQL操作
339
7.5.10 DataFrame中的数据清洗方法
341
7.6 泰坦尼克幸存者数据预处理
342
7.6.1 数据集简介
342
7.6.2 数据集的拼接
344
7.6.3 缺失值的处理
350
7.7 本章小结
353
7.8 思考与提高
353
第8章 Matplotlib与Seaborn可视化分析
365
8.1 Matplotlib与图形绘制
366
8.2 绘制简单图形
366
8.3 pyplot的高级功能
371
8.3.1 添加图例与注释
371
8.3.2 设置图形标题及坐标轴
374
8.3.3 添加网格线
378
8.3.4 绘制多个子图
380
8.3.5 Axes与Subplot的区别
382
8.4 散点图
388
8.5 条形图与直方图
392
8.5.1 垂直条形图
392
8.5.2 水平条形图
394
8.5.3 并列条形图
395
8.5.4 叠加条形图
400
8.5.5 直方图
402
8.6 饼图
407
8.7 箱形图
409
8.8 误差条
411
8.9 绘制三维图形
413
8.10 与Pandas协作绘图—以谷歌流感趋势数据为例
416
8.10.1 谷歌流感趋势数据描述
416
8.10.2 导入数据与数据预处理
417
8.10.3 绘制时序曲线图
421
8.10.4 选择合适的数据可视化表达
423
8.10.5 基于条件判断的图形绘制
427
8.10.6 绘制多个子图
430
8.11 惊艳的Seaborn
431
8.11.1 pairplot(对图)
432
8.11.2 heatmap(热力图)
434
8.11.3 boxplot(箱形图)
436
8.11.4 violin plot(小提琴图)
442
8.11.5 Density Plot(密度图)
446
8.12 本章小结
450
8.13 思考与提高
450
第9章 机器学习初步
459
9.1 机器学习定义
460
9.1.1 什么是机器学习
460
9.1.2 机器学习的三个步骤
461
9.1.3 传统编程与机器学习的差别
464
9.1.4 为什么机器学习不容易
465
9.2 监督学习
467
9.2.1 感性认识监督学习
467
9.2.2 监督学习的形式化描述
468
9.2.3 损失函数
470
9.3 非监督学习
471
9.4 半监督学习
473
9.5 机器学习的哲学视角
474
9.6 模型性能评估
476
9.6.1 经验误差与测试误差
476
9.6.2 过拟合与欠拟合
477
9.6.3 模型选择与数据拟合
479
9.7 性能度量
480
9.7.1 二分类的混淆矩阵
480
9.7.2 查全率、查准率与F1分数
481
9.7.3 P-R曲线
484
9.7.4 ROC曲线
485
9.7.5 AUC
489
9.8 本章小结
489
9.9 思考与提高
490
第10章 sklearn与经典机器学习算法
492
10.1 机器学习的利器—sklearn
493
10.1.1 sklearn简介
494
10.1.2 sklearn的安装
496
10.2 线性回归
497
10.2.1 线性回归的概念
497
10.2.2 使用sklearn实现波士顿房价预测
499
10.3 k-近邻算法
516
10.3.1 算法简介
516
10.3.2 k值的选取
518
10.3.3 特征数据的归一化
519
10.3.4 邻居距离的度量
521
10.3.5 分类原则的制定
522
10.3.6 基于sklearn的k-近邻算法实战
522
10.4 Logistic回归
527
10.4.1 为什么需要Logistic回归
527
10.4.2 Logistic源头初探
529
10.4.3 Logistic回归实战
532
10.5 神经网络学习算法
536
10.5.1 人工神经网络的定义
537
10.5.2 神经网络中的“学习”本质
537
10.5.3 神经网络结构的设计
540
10.5.4 利用sklearn搭建多层神经网络
541
10.6 非监督学习的代表—k均值聚类
550
10.6.1 聚类的基本概念
551
10.6.2 簇的划分
552
10.6.3 k均值聚类算法核心
552
10.6.4 k均值聚类算法优缺点
554
10.6.5 基于sklearn的k均值聚类算法实战
555
10.7 本章小结
561
10.8 思考与提高
562
作者介绍:
张玉宏,大数据分析师(高级),2012年于电子科技大学获得博士学位,2009—2011年美国西北大学访问学者,2019—2020年美国IUPUI高级访问学者,YOCSEF郑州2019—2020年度副主席。现执教于河南工业大学,主要研究方向为大数据、机器学习。发表学术论文30余篇,先后撰写《深度学习之美:AI时代的数据处理与最佳实践》《品味大数据》等科技图书7本,参与编写英文学术专著2部。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
本书以图文并茂的方式介绍了Python的基础内容,并深入浅出地介绍了数据分析和机器学习领域的相关入门知识。
第1章至第5章以极简方式讲解了Python的常用语法和使用技巧,包括数据类型与程序控制结构、自建Python模块与第三方模块、Python函数和面向对象程序设计等。第6章至第8章介绍了数据分析必备技能,如NumPy、Pandas和Matplotlib。第9章和第10章主要介绍了机器学习的基本概念和机器学习框架sklearn的基本用法。
对人工智能相关领域、数据科学相关领域的读者而言,本书是一本极简入门手册。对于从事人工智能产品研发的工程技术人员,本书亦有一定的参考价值。
网站评分
书籍多样性:7分
书籍信息完全性:8分
网站更新速度:3分
使用便利性:7分
书籍清晰度:3分
书籍格式兼容性:9分
是否包含广告:6分
加载速度:5分
安全性:5分
稳定性:3分
搜索功能:8分
下载便捷性:8分
下载点评
- 体验满分(629+)
- 无颠倒(313+)
- 赚了(327+)
- 二星好评(344+)
- 微信读书(485+)
- 种类多(530+)
- 盗版少(172+)
- txt(448+)
- 可以购买(303+)
- 内容齐全(491+)
- 好评多(619+)
- pdf(77+)
- 引人入胜(622+)
下载评价
- 网友 后***之: ( 2025-01-13 06:00:47 )
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 芮***枫: ( 2025-01-05 09:59:37 )
有点意思的网站,赞一个真心好好好 哈哈
- 网友 家***丝: ( 2024-12-22 23:04:37 )
好6666666
- 网友 訾***晴: ( 2025-01-09 07:30:00 )
挺好的,书籍丰富
- 网友 饶***丽: ( 2025-01-16 02:41:33 )
下载方式特简单,一直点就好了。
- 网友 田***珊: ( 2025-01-02 11:23:51 )
可以就是有些书搜不到
- 网友 冯***丽: ( 2024-12-24 06:34:07 )
卡的不行啊
- 网友 曾***玉: ( 2024-12-22 17:32:11 )
直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
- 网友 谭***然: ( 2024-12-30 01:54:55 )
如果不要钱就好了
- 宝贝睡前经典童话 丑小鸭 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 精编财务管理原理 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 五彩斑斓的纸串珠饰品 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 世界奇妙兔物语 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 欧式会所(2) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 冰弦弹月记9787503484483 正版新书知其然图书专营店 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- CT3001卫星灯光AR地球仪(中英文版) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 热传导问题的有限元分析 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 会计学原理模拟实习 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 北洋夜行记4:魔都疑云 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
书籍真实打分
故事情节:4分
人物塑造:3分
主题深度:8分
文字风格:8分
语言运用:3分
文笔流畅:8分
思想传递:5分
知识深度:4分
知识广度:7分
实用性:4分
章节划分:5分
结构布局:8分
新颖与独特:4分
情感共鸣:7分
引人入胜:9分
现实相关:5分
沉浸感:4分
事实准确性:5分
文化贡献:4分