振声学(第一卷) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
振声学(第一卷)电子书下载地址
内容简介:
Vibro-Acoustics
Noise pollution is a general problem.Structures excited by dynamic forces radiate noise.The art of noise reduction requires an understanding of vibro-acoustics.This topic describes how structures are excited,energy flows from an excitation point to a sound radiating surface,and finally how a structure radiates noise to a surrounding fluid.The aim of this text is to give a fundamental analysis and a mathematical presentation of these phenomena.The text is intended for graduate students,researchers and engineers working in the field of sound and vibration.
书籍目录:
Preface
Notations
Chapter 1 MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
1.1 A simple mass-spring system
1.2 Free vibrations
1.3 Transient vibrations
1.4 Forced harmonic vibrations
1.5 Fourier series
1.6 Complex notation
Problems
Chapter 2 FREQUENCY DOMAIN
2.1 Introduction
2.2 Frequency response
2.3 Correlation functions
2.4 Spectral density
2.5 Examples of spectral density
2.6 Coherence
2.7 Time averages of power and energy
2.8 Frequency response and point mobility functions
2.9 Loss factor
2.10 Response of a 1-DOF system,a summary
Problems
Chapter 3 WAVES IN SOLIDS
3.1 Stresses and strains
3.2 Losses in solids
3.3 Transverse waves
3.4 Longitudinal waves
3.5 Torsional waves
3.6 Waves on a string
3.7 Bending or flexural waves-beams
3.8 Waves on strings and beams-a comparison
3.9 Flexural waves-plates
3.10 Orthotropic plates
3.11 Energy flow
Problems
Chapter 4 INTERACTION BETWEEN LONGITUDINAL AND TRANSVERSE WAVES
4.1 Generalised wave equation
4.2 Intensity
4.3 Coupling between longitudinal and transverse waves
4.4 Bending of thick beams/plates
4.5 Quasi longitudinal waves in thick plates
4.6 Rayleigh waves
4.7 Sandwich plates-general
4.8 Bending of sandwich plates
4.9 Equations governing bending of sandwich plates
4.10 Wavenumbers of sandwich plates
4.11 Bending stiffness of sandwich plates
4.12 Bending of I-beams
Problems
Chapter 5 WAVE ATTENUATION DUE TO LOSSES AND TRANSMISSION ACROSS JUNCTIONS
5.1 Excitation and propagation of L-waves
5.2 Excitation and propagation of F-waves
5.3 Point excited infinite plate
5.4 Spatial Fourier transforms
5.5 Added damping
5.6 Losses in sandwich plates
5.7 Coupling between flexural and inplane waves
5.8 Transmission of F-waves across junctions,diffuse incidence
5.9 Transmission of F-waves across junctions,normal incidence
5.10 Atenuation due to change of cross section
5.11 Some other methods to increase attenuation
5.12 Velocity level differences and transmission losses
5.13 Measurements on junctions between beams
Problems
Chapter 6 LONGITUDINAL VIBRATIONS OF FINITE BEAMS
6.1 Free longitudinal vibrations in finite beams
6.2 Forced longitudinal vibrations in finite beams
6.3 The mode summation technique
6.4 Kinetic energy of vibrating beam
6.5 Mobilities
6.6 Mass mounted on a rod
6.7 Transfer matrices
Problems
Chapter 7 FLEXURAL VIBRATIONS OF FINITE BEAMS
7.1 Free flexural vibrations of beams
7.2 Orthogonality and norm of eigenfunctions
7.3 Forced excitation of F-waves
7.4 Mode summation and modal parameters
7.5 Point mobility and power
7.6 Transfer matrices for bending of beams
7.7 Infinite periodic structures
7.8 Forced vibration of periodic structures
7.9 Finite composite beam
Problems
Chapter 8 FLEXURAL VIBRATIONS OF FINITE PLATES
8.1 Free vibrations of simply supported plates
8.2 Forced response of a simply supported plate
8.3 Forced excitation of a rectangular plate with two opposite sides simply supported
8.4 Power and energy
8.5 Mobility of plates
8.6 The Rayleigh-Ritz method
8.7 Application of the Rayleigh-Ritz method
8.8 Non flat plates
8.9 The effect of an added mass or mass-spring system on plate vibrations
8.10 Small disturbances
8.11 Plates mounted on resilient layers
8.12 Vibration of orthotropic plates
8.13 Circular and homogeneous plates
8.14 Bending of plates in tension
Problems
References
Index
作者介绍:
Anders C.Nilsson holds MSc in Engineering Physics from University of Lund and Dr.Tech.in Sound and Vibration from Chalmers University in Sweden.Anders C.Nilsson worked with problems on the propagation of sound and sonic booms at Boeing Co.,Seattle,USA.Later he moved to Norway and the Research Division of Det Norske Veritas.At Veritas Anders C.Nilsson worked on the propagation of structureborne sound in large built up structures and on the excitation of plates from flow and cavitation.Anders C.Nilsson then transferred to Denmark and was head of the Danish Acoustical Institute for four years.His main activities in Denmark concerned building acoustics.In 1987,Anders C.Nilsson was appointed professor of Applied Acoustics at KTH in Stockholm,Sweden.He was also the head of the Department of Vehicle Engineering and the founder and head,until 2002,of the Marcus Wallenberg Laboratory of Sound and Vibration Research (MWL).Anders C.Nilsson has been a guest professor at James Cook University,Australia,INSA-Lyon in France and at the Institute of Acoustics,Chinese Academy of Sciences in Beijing and is professor emeritus at MWL,KTH since 2008.His main interests are problems relating to composite structures as well as vehicle acoustics.Bilong Liu received his PhD in acoustics at the Institute of Acoustics,Chinese Academy of Sciences in 2002.Then he worked on noise transmission through aircraft structures at MWL,KTH,Sweden till 2006.
Bilong Liu also holds PhD in applied acoustics from MWL,KTH.During Aug.2004 to Jan.2005,he worked on pipe and pump noise at the University of Western Australia in Perth.From 2007 he has been working as a research professor at the Institute of Acoustics,Chinese Academy of Sciences,and from 2011 he has been acting as an associate editor for an Elsevier journal-Applied Acoustics.His main interests include vibro-acoustics,acoustics materials,fluid-structure interaction,duct acoustics,active noise control,smart acoustic materials and structures.
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1
MECHANICAL SYSTEMS WITH ONE DEGREE OF FREEDOM
Innoisereducingengineeringtheconsequencesofchangesmadetoasystemmustbeunderstood.Questionsposedcouldbeonthee.ectsofchangestothemass,sti.nessorlossesofthesystemandhowthesechangescanin.uencethevibrationofornoiseradiationfromsomestructures.Realconstructionscertainlyhavemanyorinfactin.nitemodesofvibration.However,toacertainextent,eachmodecanoftenbemodelledasasimplevibratorysystem.Themostsimplevibratorysystemcanbedescribedbymeansofarigidmass,mountedonaverticalmasslessspring,whichinturnisfastenedtoanin.nitelysti.foundation.Ifthemasscanonlymoveintheverticaldirectionalongtheaxisofthespring,thesystemhasonedegreeoffreedom(1-DOF).Thisisavibratorysystemneveractuallyencounteredinpractice.However,certaincharacteristicsofsystemswithmanydegreesoffreedom,orrather,continuoussystemswithanin.nitedegreeoffreedom,canbedemonstratedbymeansoftheverysimple1-DOFmodel.Forthisreason,thebasicmassspringsystemisusedinthischaptertoillustratesomeofthebasicconceptsconcerningfreevibrations,transient,harmonicandothertypesofforcedexcitation.Kineticandpotentialenergiesarediscussedaswelltheirdependenceontheinputpowertothesystemanditslosses.
1.1 A simple mass-spring system
A simple mass-spring system is shown in Fig. 1-1. The mass is m and thespringconstantk0.Thefoundationtowhichthespringiscouplediscompletelysti.andunyielding.ItisassumedthatthespringismasslessandthatthespringforcefollowsthesimpleHooke’slaw.Thus,whenthespringiscompressedthedistancex,thereactingforcefromthespringonthemassisequaltok0x.ThedampingforceduetolossesinthesystemisdenotedFd.Whenthesystemisatrest,thedampingforceFdisequaltozero.Thestaticloadonthespringismgwheregistheaccelerationduetogravity.Duetothestaticload,thespringiscompressedthedistanceΔx.Thereactingforceonthemassisk0Δx.Thus
?
Δxk0=mg(1-1)
?
Therefore, in principle if the static
de.ection is known, then the spring
constant can be determined. How
ever, for real systems, the static and
dynamic sti.ness are not necessarily
equal. In particular, this is quite
evidentforvarioustypesofrubberFig. 1-1 Simple mass-spring system springs. In addition, a real mount has a certain mass.
Fig.1-1showsasimplemass-springsystemexcitedbyanexternalforceF(t)andadampingforceFd.Theequationofmotionforthissimplesystemis
mx¨+k0x+Fd=F(t)(1-2)
Thedeviationofthemassfromitsequilibriumpositionisx=x(t).Whenthemassisatrest,thenx=0.ThedampingforceFdisdeterminedbythelossesinthesystem.Variousprocessescancausetheselosses.Someexamplesofoften-usedsimpletheoreticalmodelsare:
i) Viscous damping;
ii) Structural or hysteretic damping;
iii) Frictional losses or Coulomb damping;
iv) Velocity squared damping.
Thedampingforcescanbeillustratedbyassumingasimpleharmonicdisplacementofthemass.Themotionisgivenbyx=x0sin(ωt).Heretime
?
istandω=2πfwhereωistheangularfrequencyandfthecorrespondingfrequency.Thedampingforcesforthefourcasesare:
i) Viscous damping.
Fd=cx?=cx0ωcos(ωt)(1-3)
?
Thedampingforceisproportionaltothevelocity?xofthemass,cisaconstant.Theenergydissipatedpercycle,i.e.inatimeintervalt0.t.t0+T,whereωT=2π,dependslinearlyonω,theangularfrequencyofoscillation.Thistypeofdampingoccursforsmallvelocitiesforasurfaceslidingona.uid.lmandfordashpotsandhydraulicdampers.
ii) Structural damping.
αα
Fd=x?=x0cos(ωt)(1-4)πω ? π ??
Theamplitudeofthedampingforceisproportionaltotheamplitudeofthedisplacementbutindependentoffrequencyforharmonicoscillations.Theenergydissipatedpercycleofmotionisfrequencyindependentoverawidefrequencyrangeandproportionaltothesquareoftheamplitudeofvibration.Thelossesinsolidscanoftenbedescribedinthisway.Ineq.(1-4)αisaconstant.
iii) Frictional damping.
Fd = ±F (1-5)
Thefrictionalforcehasaconstantmagnitude.Theplusorminussignshouldbedeterminedsothatthefrictionalforceiscounteractingthemotionofthemass.Thefrictionalforcecanbeduetoslidingbetweendrysurfaces.
iv) Velocity squared damping.
Fd = ±qx?2 = ±q(x0ωcos(ωt))2 (1-6)
? ??
Thedampingforceisproportionaltothevelocitysquaredandthesignshouldbechosensothattheforceagainiscounteractingthemotionofthemass.Ineq.(1-6)qisaconstant.Abodymovingfairlyrapidlyina.uidcouldcausethisdampingforce.
Thestructuraldampingofeq.(1-4)onlyappliesforaharmonicdis-placementofthemass.AmoregeneraldescriptionofstructuraldampingispresentedinChapter3.Examplesofenergydissipationduetoviscous,structuralandfrictionallossesaregiveninproblems1.1to1.3.
Theforcerequiredmovingthemassofasimple1-DOFsystemdependofthetypedampinginthespring.Formaintainingamotionx=x0sin(ωt)
?
ofthemass,theforcewhichmustbeappliedtothemassisobtainedfromeq.(1-2)asF=mx¨+k0x+Fd.TwocasesareillustratedinFigs.1-2and1-3.Inthe.rstexample,Fig.1-2,thedampingforceisviscous.Anellipserepresentstheforce-displacementrelationshipforthiscase.Themi-noraxisoftheellipseisproportionaltotheangularfrequencyωandtheparametercofeq.(1-3).Structuraldampinggivesthesametypeofforce-displacementcurve.However,forthiscasetheminoraxisoftheellipseisjustproportionaltothecoe.cientα,eq.(1-4),andnottotheangularfre-quency.Inthesecondexample,Fig.1-3,themassisexposedtofrictionaldamping.Thearrowinthediagramindicateshowforceanddisplacementvaryastimeincreases.Theareaenclosedbyoneloopisequivalenttotheenergyrequiredtoperformonecycleofmotionofthemass.Forasystemwithstructuraldamping,theenergydissipatedpercycleisindependentoftheangularfrequency.ThisisnotthecasewhenthelossesareviscousasdiscussedinProblems1.1and1.2.
Fig.1-2Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithviscousdamping
Fig.1-3Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithfrictionaldamping
Realstructuressubjectedtovibrationstendtoshowaforce-displacementbehaviourshowninFig.1-4.Theforce-displacementcurvefollowsadis-tortedhysteresisloop,whichisnotreadilydescribedmathematicallyorphysically.However,ingeneral,theenergydissipatedpercycleratherthantheexactforce-displacementrelationshipisofprimaryimportanceforrealvibratorysystems.Therefore,formostpracticalpurposesviscousormate-rialorforthatmatterafrequencydependentdampingcanbeassumedforthesimpleharmonicmotionofastructure.
Frictionallossesandvelocitysquareddampingresultinnonlinearequa-tionswhenintroducedineq.(1-2).Examplesofnon-linearequationsandtheirsolutionsarepresentedinforexamplerefs.[1]?[3].TheRunge-Kuttamethod,usedfornumericalsolutionsinthetimedomain,isdiscussedinrefs.[1],[4]and[5].
Fig.1-4Force-displacementcurveforsinusoidalmotionofa1-DOFsystemwithdistortedstructuralorhystereticdamping
Forlinearproblems,dampingisoftendescribedasviscousorstructural.Inpractice,thisisnotnecessarilythecase.However,if,forexamplethelossesaresmallandalmoststructural,theparameterαineq.(1-4)canbeallowedtodependonfrequencyforharmonicorapproximatelyharmonicmotion.Thistypeofdampingmodelisdiscussedinsubsequentchapters.Furtherandmostimportantly,ifviscousorstructuraldampingisintroducedineq.(1-2),theresultingequationofmotionislinear.
Forsomeapplications,likeexperimentalmodalanalysisand.niteele-mentcalculations,acertainformofdampingisoftenassumed,seeChapter
10. Aspeci.cdampingmodelmightbenecessaryformathematicalornu-mericalreasons.However,themodelcouldviolatethephysicalcharacteris-ticsofthedampingmechanism.
1.2 Free vibrations
Freevibrationsofasystemoccurifforexamplethesystematacertaininstantisgivenadisplacementfromitsequilibriumpositionoraninitialvelocityatthatparticulartime.Afterthisinitialexcitation,noexternalforcesareappliedtothesystem.Theresultingmotionofthesystemisduetofreevibrations.Forallnaturalsystems,thereisalwayssometypeofdampingpresent.Forsuchsystems,thefreevibrationsdieoutafteracertainlengthoftime.Theinitialenergyofthesystemisabsorbedbylosses.
Forasimplemass-springsystem(1-DOF)withviscouslossestheequa-tionofmotionforfreevibrations,F(t)=0,givenbyeqs.(1-2)and(1-3)as
mx¨+cx?+k0x=0(1-7)
Thegeneralboundaryconditionsorinitialvaluesare
x(0)=x0,x?(0)=v0(1-8)
The traditional approach to solving this equation is to assume a solution of the form
x(t)=Aeλt (1-9)
?
Theeigenvalueλisobtainedbyinsertingthisexpressionineq.(1-7).Con-sequently
λ2 m + λc + k0 = 0 (1-10)
Itisconvenienttode.nethefollowingparameters:
ω02 =k0/m,β=c/(2m)(1-11)
Using these parameters, the solution to eq. (1-10) is
λ1,2=.β ± .β2 . ω02 orλ1,2=.β ± i.ω02 . β2 (1-12)
with i = √.1. In general, there are two solutions to eq. (1-7). The expression for the displacement x is therefore of the form
x(t)=A1eλ1t + A2 eλ2t (1-13)
??
The parameters A1 and A2 are determined from the initial condition (1-8).
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
媒体评论
前言
书籍介绍
《振声学(第1卷)》振声学主要研究典型结构在各种激励下的振动响应、振动传递以及声辐射的一般性规律。《振声学(第1卷)》第一卷首先回顾了单自由度系统和频域分析,接着重点讨论了固体中的波传播、纵波和横波的耦合关系、结构阻尼和结构连接引起的波衰减、以及梁和板的弯曲振动等,在此基础上讨论了变分分析、弹性支撑、流体介质中的波、声振耦合以及能量分析方法等内容。
网站评分
书籍多样性:6分
书籍信息完全性:3分
网站更新速度:3分
使用便利性:8分
书籍清晰度:3分
书籍格式兼容性:6分
是否包含广告:9分
加载速度:9分
安全性:8分
稳定性:7分
搜索功能:7分
下载便捷性:7分
下载点评
- 收费(516+)
- 藏书馆(305+)
- 速度快(650+)
- 目录完整(415+)
- 小说多(679+)
- 已买(394+)
- 简单(158+)
- 值得下载(567+)
- 下载速度快(309+)
- 推荐购买(109+)
- 快捷(655+)
- 赞(402+)
下载评价
- 网友 融***华: ( 2024-12-22 04:52:10 )
下载速度还可以
- 网友 印***文: ( 2024-12-21 04:20:15 )
我很喜欢这种风格样式。
- 网友 訾***雰: ( 2024-12-25 02:59:33 )
下载速度很快,我选择的是epub格式
- 网友 宫***玉: ( 2024-12-27 11:50:37 )
我说完了。
- 网友 焦***山: ( 2025-01-02 22:23:11 )
不错。。。。。
- 网友 詹***萍: ( 2025-01-17 13:25:58 )
好评的,这是自己一直选择的下载书的网站
- 网友 曾***文: ( 2024-12-27 14:55:27 )
五星好评哦
- 网友 常***翠: ( 2024-12-21 02:34:50 )
哈哈哈哈哈哈
- 网友 习***蓉: ( 2025-01-06 17:35:06 )
品相完美
- 网友 益***琴: ( 2024-12-26 01:05:31 )
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 辛***玮: ( 2025-01-09 04:13:54 )
页面不错 整体风格喜欢
- 网友 步***青: ( 2025-01-07 17:08:43 )
。。。。。好
- 网友 扈***洁: ( 2024-12-27 15:03:48 )
还不错啊,挺好
- 网友 孙***美: ( 2025-01-19 08:23:00 )
加油!支持一下!不错,好用。大家可以去试一下哦
- 桥牌基础教程 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 化工热力学和物理性质实验(高等院校特色规划教材) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 旧概念与新环境:以人为本的城镇化 港台原版 梁鹤年 香港中和出版 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 劳拉的星星——星空奇遇 【德】克劳斯·鲍姆加特 李丹抒 中国少年儿童出版社 9787514850376 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 全国硕士研究生入学考试历年真题解析 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 基因宇宙 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 生命的远行 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 糗事一箩筐/阿吹不吹牛爆笑校园系列 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 2018适用一课一练·高二英语(N版,第一学期) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- Solaris参考手册 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
书籍真实打分
故事情节:5分
人物塑造:8分
主题深度:8分
文字风格:5分
语言运用:7分
文笔流畅:9分
思想传递:4分
知识深度:8分
知识广度:9分
实用性:9分
章节划分:5分
结构布局:6分
新颖与独特:5分
情感共鸣:7分
引人入胜:3分
现实相关:9分
沉浸感:6分
事实准确性:7分
文化贡献:7分